Development of the Knowfoot Mobile Application for Foot Posture Assessment

Abstract

KnowFoot is an application developed with the aim of transforming the assessment of foot posture into a fast and dynamic process. During the construction of the tool, was taken into account the low cost, easy access, facility of use, in addition to the intuitive interface were considered. KnowFoot was based on the Foot Posture Index and Navicular Drop Test clinical assessment instruments. Therefore, the aim of the study was to present the process of the tool construction, the technologies applied in it, the description of the method used to access the foot posture and the result of the developed application.

Keywords: Mobile application, Posture, Foot

References

Ahmad, A., Li, K., Feng, C., Asim, S. M., Yousif, A., & Ge, S. (2018). An empirical study of investigating mobile applications development challenges. IEEE Access, 6, 17711-17728. Recuperado de: https://doi.org/10.1155/2019/5743892

Anand, V., & Saxena, D. (2013, December). Comparative study of modern web browsers based on their performance and evolution. In 2013 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-5). IEEE. Recuperado de: https://doi.org/10.1109/ICCIC.2013.6724273

Angular (2020). Recuperado de: https://angular.io/docs

Banos, O., Villalonga, C., Garcia, R., Saez, A., Damas, M., Holgado-Terriza, J. A., ... & Rojas, I. (2015). Design, implementation and validation of a novel open framework for agile development of mobile health applications. Biomedical engineering online, 14(2), S6. Recuperado de: https://doi.org/10.1186/1475-925X-14-S2-S6

Biørn-Hansen, A., Majchrzak, T. A., & Grønli, T. M. (2017, April). Progressive Web Apps: The Possible Web-native Unifier for Mobile Development. In WEBIST (pp. 344-351). Recuperado de: https://doi.org/10.5220/0006353703440351

Bitbucket Cloud documentation - Atlassian Documentation (2020). Recuperado de: https://confluence.atlassian.com/bitbucket

Castensøe-Seidenfaden, P., Husted, G. R., Teilmann, G., Hommel, E., Olsen, B. S., & Kensing, F. (2017). Designing a self-management app for young people with type 1 diabetes: methodological challenges, experiences, and recommendations. JMIR mHealth and uHealth, 5(10), e124. Recuperado de: https://doi.org/10.2196/mhealth.8137

Corral, L., Sillitti, A., & Succi, G. (2013, August). Agile software development processes for mobile systems: Accomplishment, evidence and evolution. In International conference on mobile web and information systems (pp. 90-106). Springer, Berlin, Heidelberg. Recuperado de: https://doi.org/10.1007/978-3-642-40276-0_8

Cowan, D. N., Jones, B. H., & Robinson, J. R. (1993). Foot morphologic characteristics and risk of exercise-related injury. Archives of family medicine, 2(7), 773-777. Recuperado de: https://doi.org/10.1001/archfami.2.7.773

Documentation | Firebase (2020). Recuperado de: https://firebase.google.com/docs

El-Kassas, W. S., Abdullah, B. A., Yousef, A. H., & Wahba, A. M. (2017). Taxonomy of cross-platform mobile applications development approaches. Ain Shams Engineering Journal, 8(2), 163-190. Recuperado de: https://doi.org/10.1016/j.asej.2015.08.004

Figma (2020). Recuperado de: https://help.figma.com/

Fling, B. (2009). Mobile design and development: Practical concepts and techniques for creating mobile sites and Web apps. O'Reilly Media, Inc.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9(8), 28-35. Recuperado de: http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf

Garnett, C., Crane, D., West, R., Brown, J., & Michie, S. (2019). The development of Drink Less: an alcohol reduction smartphone app for excessive drinkers. Translational Behavioral Medicine, 9, 296-307. Recuperado de: https://doi.org/10.1093/tbm/iby043

Guedes, G. T. (2018). UML 2-Uma abordagem prática. São Paulo: Novatec Editora.

Gunther, E. (2001). What is e-Health? Journal of Medical Internet Research, 3(2), e20. Recuperado de: https://dx.doi.org/10.2196%2Fjmir.3.2.e20

Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T. et al. (2018). Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer, 21(4), 653-660. Recuperado de: https://doi.org/10.1007/s10120-018-0793-2

Imamura, Y., Uekawa, H., Ishihara, Y., Sato, M., & Yamauchi, T. (2018, January). Web access monitoring mechanism for android webview. In Proceedings of the Australasian Computer Science Week Multiconference (pp. 1-8). Recuperado de: https://doi.org/10.1145/3167918.3167942

Ionic Framework - Ionic Documentation (2020). Recuperado de: https://ionicframework.com/docs

Jacobs, I., Jaffe, J., & Le Hegaret, P. (2012). How the open web platform is transforming industry. IEEE internet computing, 16(6), 82-86. Recuperado de: https://doi.org/10.1109/MIC.2012.134

Kay, M., Santos, J., & Takane, M. (2011). mHealth: New horizons for health through mobile technologies. World Health Organization, 64(7), 66-71. Recuperado de: https://www.who.int/goe/publications/goe_mhealth_web.pdf

Keenan, A. M., Redmond, A. C., Horton, M., Conaghan, P. G., & Tennant, A. (2007). The Foot Posture Index: Rasch analysis of a novel, foot-specific outcome measure. Archives of physical medicine and rehabilitation, 88(1), 88-93. Recuperado de: https://doi.org/10.1016/j.apmr.2006.10.005

Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M. et al. (2013). Mobile health technology evaluation: the mHealth evidence workshop. American journal of preventive medicine, 45(2), 228-236. Recuperado de: https://doi.org/10.1016/j.amepre.2013.03.017

Lee, J., Yoon, J., & Cynn, H. (2017). Foot exercise and taping in patients with patellofemoral pain and pronated foot. Journal of bodywork and movement therapies, 21(1), 216-222. Recuperado de: https://doi.org/10.1016/j.jbmt.2016.07.010

Linardon, J., Cuijpers, P., Carlbring, P., Messer, M., & Fuller-Tyszkiewicz, M. (2019). The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World Psychiatry, 18(3), 325-336. Recuperado de: https://doi.org/10.1002/wps.20673

Lozano-Lozano, M., Galiano-Castillo, N., Fernández-Lao, C., Postigo-Martin, P., Álvarez-Salvago, F., Arroyo-Morales, M., & Cantarero-Villanueva, I. (2020). The Ecofisio Mobile App for Assessment and Diagnosis Using Ultrasound Imaging for Undergraduate Health Science Students: Multicenter Randomized Controlled Trial. Journal of medical Internet research, 22(3), e16258. Recuperado de: https://doi.org/10.2196/16258

Mackert, M., Mabry-Flynn, A., Champlin, S., Donovan, E. E., & Pounders, K. (2016). Health literacy and health information technology adoption: the potential for a new digital divide. Journal of medical Internet research, 18(10), e264. Recuperado de: https://doi.org/10.2196/jmir.6349

Mallinson, K. (2015). Smartphone Revolution: Technology patenting and licensing fosters innovation, market entry, and exceptional growth. IEEE Consumer Electronics Magazine, 4(2), 60-66. Recuperado de: https://doi.org/10.1109/MCE.2015.2392954

Martinez, B. R., Oliveira, J. C. D., Vieira, K. V. S. G., & Yi, L. C. (2019). Translation, Cross-cultural Adaptation and Reliability of the Foot Posture Index (FPI-6) -Brazilian Version. Physiotherapy theory and practice, 1-6. Recuperado de: https://doi.org/10.1080/09593985.2019.1587800

Meirelles, F. S. (2020). 31ª Pesquisa Anual do Uso de TI nas Empresas. FGVcia: Centro e Tecnologia de Informação Aplicada da EAESP. https://eaesp.fgv.br/sites/eaesp.fgv.br/files/u68/fgvcia2020pesti-resultados_0.pdf

Merkel, D. (2014). Docker: lightweight linux containers for consistent development and deployment. Linux journal, 2(239). https://dl.acm.org/doi/10.5555/2600239.2600241

Messias, V. (2005). Fitgen: um aplicativo móvel de apoio à manutenção de treinos e dietas1. In Congresso de Computação-Uniara (p. 38).

MONITORA Covid-19 [S. l.]: Consórcio Nordeste (2020). Recuperado de: https://play.google.com/store/apps/details?id=br.com.novetech.monitoracorona

Moreira, R., Teles, A., Fialho, R., Baluz, R., Santos, T. C., Goulart-Filho, R. et al. (2020). Mobile Applications for Assessing Human Posture: A Systematic Literature Review. Electronics, 9(8), 1196. Recuperado de: https://doi.org/10.3390/electronics9081196

Oliveira, R. (2009). Lesões nos Jovens Atletas: conhecimento dos factores de risco para melhor prevenir. Revista Portuguesa de Fisioterapia no Desporto, 3(1), 33-8. Recuperado de: https://www.researchgate.net/publication/257023399

Picciano, A. M., Rowlands, M. S., & Worrell, T. (1993). Reliability of open and closed kinetic chain subtalar joint neutral positions and navicular drop test. Journal of Orthopaedic & Sports Physical Therapy, 18(4), 553-558. Recuperado de: https://doi.org/10.2519/jospt.1993.18.4.553

Putzer, G. J., & Park, Y. (2010). The effects of innovation factors on smartphone adoption among nurses in community hospitals. Perspectives in Health Information Management/AHIMA. American Health Information Management Association, 7 (Winter). Recuperado de: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805554/pdf/phim0007-0001b.pdf

Redmond, A. C., Crane, Y. Z., & Menz, H. B. (2008). Normative values for the foot posture index. Journal of Foot and Ankle research, 1(1), 6. Recuperado de: https://doi.org/10.1186/1757-1146-1-6

Redmond, A. C., Crosbie, J., & Ouvrier, R. A. (2006). Development and validation of a novel rating system for scoring standing foot posture: the Foot Posture Index. Clinical biomechanics, 21(1), 89-98. Recuperado de: https://doi.org/10.1016/j.clinbiomech.2005.08.002

Rocha, F. S. da, Santana, E. B., Silva, É. S. da, Carvalho, J. S. M., & de Queiroz Carvalho, F. L. (2017). Uso de apps para a promoção dos cuidados à saúde. Anais do Seminário Tecnologias Aplicadas a Educação e Saúde.

Rodrigues, V. S., Agostini, C. M., Guimarães, A. C., & Damázio, L. C. M. (2019). Eficácia de um aplicativo digital na avaliação da marcha dos indivíduos com diabetes e hipertensão. Lecturas: Educación Física y Deportes, 23(250), 103-114. Recuperado de: https://www.efdeportes.com/efdeportes/index.php/EFDeportes/article/view/866

Sommerville, I. (2011). Engenharia de Software (Vol. 9). São Paulo: Pearson.

StatCounter Global Stats | Mobile Operating System Market Share Worldwide (2020). Recuperado de: https://gs.statcounter.com/os-market-share/mobile/worldwide

StatCounter Global Stats | Mobile Vendor Market Share Worldwide (2020). Recuperado de: https://gs.statcounter.com/vendor-market-share/mobile

Statista | Number of internet users worldwide 2005-2018 (2020). Recuperado de: https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/

Tanenbaum, A. S. (2016). Sistemas operacionais modernos (Vol. 4). São Paulo: Pearson.

Trello Tour (2020). Recuperado de: https://trello.com/en/tour

Varghese, B., & Buyya, R. (2018). Next generation cloud computing: New trends and research directions. Future Generation Computer Systems, 79, 849-861. Recuperado de: http://dx.doi.org/10.1016/j.future.2017.09.020

Willocx, M., Vossaert, J., & Naessens, V. (2016, May). Comparing performance parameters of mobile app development strategies. In Proceedings of the International Conference on Mobile Software Engineering and Systems (pp. 38-47). Recuperado de: https://doi.org/10.1145/2897073.2897092

Published
2020-12-15
How to Cite
Pazetti, J. A. T., Melo, H. S. de, Souza, G. F. de, Cruz, W. S. da, Ribeiro, M. C. I., Rumaquella, M. R., Tessutti, V., Mancini, F., & Yi, L. C. (2020). Development of the Knowfoot Mobile Application for Foot Posture Assessment. Lecturas: Educación Física Y Deportes, 25(271), 126-142. https://doi.org/10.46642/efd.v25i271.2394
Section
Innovation and Experiences