Recomendações de exercício físico em perda muscular e de peso devido ao COVID-19. Uma revisão narrativa
Resumo
Introdução: Uma perda muscular está associada a uma doença sintomática de Coronavírus 2019 (COVID-19) por composições histológicas e corporais e análises bioquímicas em medidas de quantificação. Não está claro o mecanismo de lesão muscular nesses pacientes, mas a medida tomográfica é um resultado que aparece nas análises em pacientes internados. Objetivo: O objetivo deste estudo é avaliar a influência do COVID-19 na perda de peso, caquexia e sarcopenia. Métodos: A revisão da literatura foi realizada de acordo com a Declaração SANRA (escala para avaliação da qualidade de artigos de revisão narrativa) utilizando os bancos de dados PubMed, Lilacs, Google Scholar e Cochrane Library. Primeiro, para identificar publicações relevantes sobre COVID-19 e perda muscular e de peso, foram usados os termos de pesquisa combinados: (1) COVID-19 OR SARS-CoV-2 (2) caquexia OR perda de massa muscular e (3) exercício OR nutrição. Resultados e conclusões: Informações prévias relacionadas a citocinas, nutrição, tratamento farmacológico, inatividade física durante internações na unidade de terapia intensiva (UTI), ventilação mecânica estão associadas à de sarcopenia e caquexia em pacientes com COVID-19. Na área de estudos existe associação entre exames de imagem e desempenho em testes físicos, medidas antropométricas e marcas sanguíneas de distrofia muscular.
Referências
Asrani, P., & Hassan, M.I. (2021). SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Molecular and Cellular Biochemistry, 476(2), 675-687. https://doi.org/10.1007/s11010-020-03935-z
Baethge, C., Goldbeck-Wood, S., & Mertens, S. (2019). SANRA—a scale for the quality assessment of narrative review articles. Res Integr Peer Rev, 4, 2-8. https://doi.org/10.1186/s41073-019-0064-8
Baracos, V.E., Martin, L., Korc, M., Guttridge, D.C., & Fearon, K.C.H. (2018). Cancer-associated cachexia. Nat Rev Dis Prim, 4, 17105. http://dx.doi.org/10.1038/nrdp.2017.105
Brandt, C., & Pedersen, B.K. (2010). The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol., 20258. https://doi.org/10.1155/2010/520258
Briguglio, M., Pregliasco, F.E., Lombardi, G., Perazzo, P., & Banfi, G. (2020). The malnutritional status of the host as a virulence factor for new coronavirus SARS-CoV-2. Front Med (Lausanne), 7, 146. https://doi.org/10.3389/fmed.2020.00146
Chen, N., Zhou, M., & Dong, X. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395, 507-513. https://doi.org/10.1016/s0140-6736(20)30211-7
Cheval, B., Sieber, S., Maltagliati, S., Millet, GP, Formánek, T., Chalabaev, A., Cullati, S., & Boisgontier, MP (2021). Muscle strength is associated with COVID-19 hospitalization in adults 50 years of age and older. medRxiv. https://doi.org/10.1101/2021.02.02.21250909
Garber, C.E. et al. (2011). American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc, 43(7), 1334-59. https://doi.org/10.1249/mss.0b013e318213fefb
Gentil, P., Lira, CAB, Coswig, V., Barroso, WKS, Vitorino, PVO, Ramirez-Campillo, R., Martins, W., & Souza1, D. (2021). Practical Recommendations Relevant to the Use of Resistance Training for COVID-19 Survivors. Frontiers in Physiology, 12. https://doi.org/10.3389/fphys.2021.637590
Gibala, M.J., Gillen, J.B., & Percival, M.E. (2014). Physiological and health-related adaptations to low-volume interval training: Influences of nutrition and sex. 44(Suppl 2), S127-S137. https://doi.org/10.1007/s40279-014-0259-6
Gil, S., Jacob Filho, W., Shinjo, SK, Ferriolli, E., Busse, A.L., Avelino-Silva, TJ, Longobardi, I., Oliveira Júnior, GN, Swinton, P., Gualano, P., Roschel, H., & HCFMUSP COVID-19 Study Group (2021). Muscle Strength and Muscle Mass as Predictors of Hospital Length of Stay in Patients with Moderate to Severe COVID-19: A Prospective Observational Study. medRxiv. https://doi.org/10.1002/jcsm.12789
Gleeson, M., Bishop, N.C., Stensel, D.J., Lindley, M.R., Mastana, S.S., & Nimmo, M.A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature reviews immunology, 11(9), 607-615. https://doi.org/10.1038/nri3041
Hughes, D.C., Ellefsen, S., & Baar, K. (2018). Adaptations to Endurance and Strength Training. Cold Spring Harb. Perspect Med, 8(6), a029769. https://doi.org/10.1101%2Fcshperspect.a029769
Jia, H. (2016). Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. Shock, 46(3), 239-248. https://doi.org/10.1097/shk.0000000000000633
Jin, Y., Yang, H., & Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses, 12, 372.
Krieger, J.W. (2010). Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. The Journal of Strength & Conditioning Research, 24(4), 1150-1159. https://doi.org/10.1519/jsc.0b013e3181d4d436
Leal, L.G., Lopes, M.A., Peres, S.B., & Batista Jr, M.L. (2021). Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Frontiers in Physiology, 11, 1769. https://doi.org/10.3389/fphys.2020.570170
Li, T., Zhang, Y., Gong, C., Wang, J., Liu, B., Shi, L., & Duan, J. (2020). Prevalence of malnutrition and analysis of related factors in elderly patients with COVID- 19 in Wuhan, China. Eur J Clin Nutr, 74(6), 871-875. https://doi.org/10.1038/s41430-020-0642-3
Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J., & HLH Across Speciality Collaboration, UK (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033-1034. https://doi.org/10.1016/s0140-6736(20)30628-0
Pedersen, B.K., & Saltin, B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports, 25(Suppl 3), 1-72. https://doi.org/10.1111/sms.12581
Queiroz Júnior, J.R.A., da Costa Pereira, J.P., Benjamim, R.A.C., Silva, N.O.L. da, Maria Eduarda de Paiva Silva, M.E. de P., & Ramiro, C.P.S.P. (2023). Relationship between sarcopenia and cachexia with prognostic markers of middle-aged and older inpatients with COVID-19: a case-control study. Eur Geriatr Med, 14(3), 217-526. https://doi.org/10.1007/s41999-023-00792-z
Salman, D., Vishnubala, D., Le Feuvre, P., Beaney, T., Korgaonkar, J., Majeed, A., & McGregor, AH (2021). Returning to physical activity after covid-19. BMJ, 372. https://doi.org/10.1136/bmj.m4721
Silva, A.B., Siqueira, S., Soares, WRA, Rangel, FS, Santos, NO, Freitas, AS, Silveira, PR, Tiwari, S., Alzahrani, KJ, Góes-Neto, A., Azevedo, V., Ghosh, P., & Barh, D. (2021). Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses, 13(4), 700. https://doi.org/10.3390/v13040700
Simpson, R.J., & Katsanis, E. (2020). The immunological case for staying active during the COVID-19 pandemic. Brain, behavior, and immunity, 87, 6-7. https://doi.org/10.1016/j.bbi.2020.04.041
Singh, S.K., & Singh, R. (2022). Cytokines and Chemokines in Cancer Cachexia and Its Long-Term Impact on COVID-19. Cells, 11, 579 https://doi.org/10.3390/cells11030579
Tieland, M., Trouwborst, I., & Clark, B.C. (2018). Skeletal muscle performance and ageing. Journal of cachexia, sarcopenia and muscle, 9(1), 3-19. https://doi.org/10.1002/jcsm.12238
Udina, C., Ars, J., Morandi, A., Vilaró, J., Cáceres, C., & Inzitari, M. (2021). Rehabilitation in Adult Post-COVID-19 Patients in Post-Acute Care with Therapeutic Exercise. The Journal of Frailty & Aging, 10(3), 297-300. https://doi.org/10.14283/jfa.2021.1
Virgens, I.P., Santana, N.M., Lima, S.C.V.C., & Fayh, A.P.T. (2020). Can COVID-19 be a risk for cachexia for patients during intensive care? Narrative review and nutritional recommendations. British Journal of Nutrition, 1-9. https://doi.org/10.1017%2FS0007114520004420
Welch, C. , Hassan-Smith, Z.K., Greig, C.A., Lord, J.M., & Jackson, T.A. (2018). Acute Sarcopenia Secondary to Hospitalisation - An Emerging Condition Affecting Older Adults. Aging Dis, 9(1), 151-164. https://doi.org/10.14336/ad.2017.0315
Welch, C., Greig, C.A., Masud, T., Wilson, D., & Jackson, T.A. (2020). COVID-19 and Acute Sarcopenia. Aging Dis., 11, 1345-1351. https://doi.org/10.14336/ad.2020.1014
Biografias Autor
http://lattes.cnpq.br/1257059349799963
http://lattes.cnpq.br/4466773213028214
Direitos de Autor (c) 2023 Lecturas: Educación Física y Deportes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.