A influência das monoaminas -dopamina e serotonina- na capacidade de realizar o exercício físico
Resumo
A capacidade de realizar o exercício físico é influenciada por diversos fatores, dentre eles a concentração e atividade das monoaminas, tais como dopamina e serotonina. Esses neurotransmissores modulam vários sistemas fisiológicos que interfere na resposta hormonal, controle do movimento, termorregulação e motivação para o esforço. Assim, compreender a forma como as monoaminas interferem na capacidade de se exercitar pode ser fundamental para que estratégias sejam traçadas afim de melhorar o desempenho físico. Diante do exposto, o objetivo deste estudo é realizar uma revisão de literatura sobre a influência das monoaminas na capacidade de realizar o exercício físico.
Referências
Acworth, I., Nicholass, J., Morgan, B., e Newsholme, E.A. (1986). Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochemical and biophysical research communications, 137(1), 149-153. https://doi.org/10.1016/0006-291x(86)91188-5
Akiyama, K., e Sutoo, D.E. (1999). Rectifying effect of exercise on hypertension in spontaneously hypertensive rats via a calcium-dependent dopamine synthesizing system in the brain. Brain research, 823(1-2), 154-160. https://doi.org/10.1016/s0006-8993(99)01171-3
Amann, M., Sidhu, S.K., McNeil, C.J., e Gandevia, S.C. (2022). Critical considerations of the contribution of the corticomotoneuronal pathway to central fatigue. The Journal of Physiology, 600(24), 5203-5214. https://doi.org/10.1113/jp282564
Badawy, A.A., e Guillemin, G.J. (2022). Species differences in tryptophan metabolism and disposition. International Journal of Tryptophan Research, 15. https://doi.org/10.1177/11786469221122511
Bailey, S.P., Davis, J.M., e Ahlborn, E.N. (1993). Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue. Journal of Applied Physiology, 74(6), 3006-3012. https://doi.org/10.1152/jappl.1993.74.6.3006
Balthazar, C.H., Leite, L.H., Rodrigues, A.G., e Coimbra, C.C. (2009). Performance-enhancing and thermoregulatory effects of intracerebroventricular dopamine in running rats. Pharmacology biochemistry and behavior, 93(4), 465-469. https://doi.org/10.1016/j.pbb.2009.06.009
Ben-Jonathan, N., e Hnasko, R. (2001). Dopamine as a prolactin (PRL) inhibitor. Endocrine reviews, 22(6), 724-763. https://doi.org/10.1210/edrv.22.6.0451
Caperuto, E.C., Dos Santos, R.V.T., Mello, M.T.D., e Costa Rosa, L.F.B.P. (2009). Effect of endurance training on hypothalamic serotonin concentration and performance. Clinical and Experimental Pharmacology and Physiology, 36(2), 189-191. https://doi.org/10.1111/j.1440-1681.2008.05111.x
Chaouloff, F. (1993). Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Research Reviews, 18(1), 1-32. https://doi.org/10.1016/0165-0173(93)90005-k
Chaouloff, F. (1997). Effects of acute physical exercise on central serotonergic systems. Medicine and science in sports and exercise, 29(1), 58-62. https://doi.org/10.1097/00005768-199701000-00009
Chaouloff, F. (2000). Serotonin, stress and corticoids. Journal of psychopharmacology, 14(2), 139-151. https://doi.org/10.1177/026988110001400203
Chaouloff, F., Elghozi, J.L., Guezennec, Y., e Laude, D. (1985). Effects of conditioned running on plasma, liver and brain tryptophan and on brain 5-hydroxytryptamine metabolism of the rat. British journal of pharmacology, 86(1), 33. https://doi.org/10.1111/j.1476-5381.1985.tb09432.x
Chaouloff, F., Laude, D., e Elghozi, J.L. (1989). Physical exercise: evidence for differential consequences of tryptophan on 5-HT synthesis and metabolism in central serotonergic cell bodies and terminals. Journal of Neural Transmission/General Section JNT, 78, 121-130. https://doi.org/10.1007/bf01252498
Cordeiro, LMS, Guimaraes, JB, Wanner, SP, La Guardia, RB, Miranda, RM, Marubayashi, U., e Soares, DD (2014). Inhibition of tryptophan hydroxylase abolishes fatigue induced by central tryptophan in exercising rats. Scandinavian Journal of Medicine & Science in Sports, 24(1), 80-88. https://doi.org/10.1111/j.1600-0838.2012.01464.x
Cordeiro, LMS, Rabelo, PCR, Moraes, MM, Teixeira-Coelho, F., Coimbra, CC, Wanner, SP, e Soares, DD (2017). Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. Brazilian journal of medical and biological research, 50, e6432. https://doi.org/10.1590/1414-431x20176432
Cox, B., Kerwin, R., e Lee, T.F. (1978). Dopamine receptors in the central thermoregulatory pathways of the rat. The Journal of Physiology, 282(1), 471-483. https://doi.org/10.1113/jphysiol.1978.sp012476
Cox, B., Kerwin, R., e Lee, T.F. (1978). Dopamine receptors in the central thermoregulatory pathways of the rat. The Journal of Physiology, 282(1), 471-483. https://doi.org/10.1113/jphysiol.1978.sp012476
Davis, J.M., e Bailey, S.P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and science in sports and exercise, 29(1), 45-57. https://doi.org/10.1097/00005768-199701000-00008
Davis, J.M., Alderson, N.L., e Welsh, R.S. (2000). Serotonin and central nervous system fatigue: nutritional considerations. The American journal of clinical nutrition, 72(2), 573S-578S. https://doi.org/10.1093/ajcn/72.2.573s
Dwyer, D., e Browning, J. (2000). Endurance training in Wistar rats decreases receptor sensitivity to a serotonin agonist. Acta physiologica scandinavica, 170(3), 211-216. https://doi.org/10.1046/j.1365-201x.2000.00774.x
Edinoff, AN, Akuly, HA, Hanna, TA, Ochoa, CO, Patti, SJ, Ghaffar, YA, Viswanath, O., Urits, I., Boyer, AG, Cornett, EM, e Kaye, AM (2021). Selective serotonin reuptake inhibitors and adverse effects: a narrative review. Neurology International, 13(3), 387-401. https://doi.org/10.3390/neurolint13030038
Feldberg, W., e Myers, R.D. (1965). Changes in temperature produced by micro-injections of amines into the anterior hypothalamus of cats. The Journal of physiology, 177(2), 239. https://doi.org/10.1113%2Fjphysiol.1965.sp007589
Foley, T.E., e Fleshner, M. (2008). Neuroplasticity of dopamine circuits after exercise: implications for central fatigue. Neuromolecular medicine, 10, 67-80. https://doi.org/10.1007/s12017-008-8032-3
Gerald, M.C. (1978). Effects of (+)-amphetamine on the treadmill endurance performance of rats. Neuropharmacology, 17(9), 703-704. https://doi.org/10.1016/0028-3908(78)90083-7
Greenwood, BN, Foley, TE, Le, TV, Strong, PV, Loughridge, AB, Day, HE, e Fleshner, M. (2011). Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behavioural brain research, 217(2), 354-362. https://doi.org/10.1016/j.bbr.2010.11.005
Hasegawa, H., Yazawa, T., Yasumatsu, M., Otokawa, M., e Aihara, Y. (2000). Alteration in dopamine metabolism in the thermoregulatory center of exercising rats. Neuroscience letters, 289(3), 161-164. https://doi.org/10.1016/s0304-3940(00)01276-3
Heyes, M.P., Garnett, E.S., e Coates, G. (1988). Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats. Life Sciences, 42(16), 1537-1542. https://doi.org/10.1016/0024-3205(88)90011-2
Hortobágyi, T., Vetrovsky, T., Balbim, GM, Silva, NCBS, Manca, A., Deriu, F., Kolmos, M., Kruuse, C., Liu-Ambrose, T., Radák, Z., Váczi, M., Johansson, H., Santos, PCR, Franzén, E., e Granacher, U. (2022). The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Research Reviews, 80. https://doi.org/10.1016/j.arr.2022.101698
Kiyatkin, E.A. (2008). Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses. Pharmacology Biochemistry and Behavior, 91(2), 233-242. https://doi.org/10.1016/j.pbb.2008.08.004
Knab, A.M., e Lightfoot, J.T. (2010). Does the difference between physically active and couch potato lie in the dopamine system?. International journal of biological sciences, 6(2), 133. https://doi.org/10.7150/ijbs.6.133
Kravitz, A.V., e Kreitzer, A.C. (2012). Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology, 27(3), 167-177. https://doi.org/10.1152/physiol.00004.2012
Leite, L.H., Rodrigues, A.G., Soares, D.D., Marubayashi, U., e Coimbra, C.C. (2010). Central fatigue induced by losartan involves brain serotonin and dopamine content. Med Sci Sports Exerc, 42(8), 1469-1476. https://doi.org/10.1249/mss.0b013e3181d03d36
Marques, E., Vasconcelos, F., Rolo, MR, Pereira, FC, Silva, AP, Macedo, TR, e Ribeiro, CF (2008). Influence of Chronic Exercise on the Amphetamine-Induced Dopamine Release and Neurodegeneration in the Striatum of the Rat. Annals of the New York Academy of Sciences, 1139(1), 222-231. https://doi.org/10.1196/annals.1432.041
Meeusen, R., e Decroix, L. (2018). Nutritional supplements and the brain. International journal of sport nutrition and exercise metabolism, 28(2), 200-211. https://doi.org/10.1123/ijsnem.2017-0314
Meeusen, R., e Roelands, B. (2018). Fatigue: is it all neurochemistry?. European journal of sport science, 18(1), 37-46. https://doi.org/10.1080/17461391.2017.1296890
Meeusen, R., Watson, P., Hasegawa, H., Roelands, B., e Piacentini, M.F. (2006). Central fatigue: the serotonin hypothesis and beyond. Sports Medicine, 36, 881-909. https://doi.org/10.2165/00007256-200636100-00006
Mora, F., Segovia, G., Del Arco, A., de Blas, M., e Garrido, P. (2012). Stress, neurotransmitters, corticosterone and body–brain integration. Brain research, 1476, 71-85. https://doi.org/10.1016/j.brainres.2011.12.049
Nash, J.F., e Meltzer, H.Y. (2023). Neuroendocrine studies in psychiatric disorders: the role of serotonin. In Role Of Serotonin In Psychiatric Disorders (pp. 57-90). Routledge.
Navarro, PA, Paranhos, T., Lovo, E., De Oliveira-Souza, R., Gorgulho, AA, De Salles, A., e López, WOC (2022). Safety and feasibility of nucleus accumbens surgery for drug addiction: a systematic review. Neuromodulation: Technology at the Neural Interface, 25(2), 171-184. https://doi.org/10.1111/ner.13348
Newsholme, E.A., Blomstrand, E., e Ekblom, B. (1992). Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. British medical bulletin, 48(3), 477-495. https://doi.org/10.1093/oxfordjournals.bmb.a072558
Pérez-Fernández, J., Barandela, M., e Jiménez-López, C. (2021). The dopaminergic control of movement-evolutionary considerations. International journal of molecular sciences, 22(20), 11284. https://doi.org/10.3390%2Fijms222011284
Petzinger, GM, Walsh, JP, Akopian, G., Hogg, E., Abernathy, A., Arevalo, P., Turnquist, P., Vučković, M., Fisher, BE, Togasaki, DM, e Jakowec, MW (2007). Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Journal of Neuroscience, 27(20), 5291-5300. https://doi.org/10.1523/JNEUROSCI.1069-07.2007
Pourhamzeh, M., Moravej, F. G., Arabi, M., Shahriari, E., Mehrabi, S., Ward, R., Ahadi, R., e Joghataei, MT (2022). The roles of serotonin in neuropsychiatric disorders. Cellular and molecular neurobiology, 42(6), 1671-1692. https://doi.org/10.1007/s10571-021-01064-9
Rabelo, PC, Horta, NA, Cordeiro, LM, Poletini, MO, Coimbra, CC, Szawka, RE, e Soares, DD (2017). Intrinsic exercise capacity in rats influences dopamine neuroplasticity induced by physical training. Journal of Applied Physiology, 123(6), 1721-1729. https://doi.org/10.1152/japplphysiol.00506.2017
Rodrigues, A.G., Soares, D.D., Marubayashi, U., e Coimbra, C.C. (2009). Heat loss during exercise is related to serotonin activity in the preoptic area. Neuroreport, 20(8), 804-808. https://doi.org/10.1097/wnr.0b013e32832b8c90
Roelands, B., Goekint, M., Buyse, L., Pauwels, F., De Schutter, G., Piacentini, F., Hasegawa, H., Watson, P., e Meeusen, R. (2009). Time trial performance in normal and high ambient temperature: is there a role for 5-HT?. European journal of applied physiology, 107, 119-126. https://doi.org/10.1007/s00421-009-1109-3
Roelands, B., Hasegawa, H., Watson, P., Piacentini, MF, Buyse, L., De Schutter, G., e Meeusen, RR (2008). The effects of acute dopamine reuptake inhibition on performance. Medicine & Science in Sports & Exercise, 40(5), 879-885. http://dx.doi.org/10.1249/MSS.0b013e3181659c4d
Romanowski, W., e Grabiec, S. (1974). The role of serotonin in the mechanism of central fatigue. Acta Physiologica Polonica, 25(2), 127-134. https://pubmed.ncbi.nlm.nih.gov/4830711/
Rothhaas, R., e Chung, S. (2021). Role of the preoptic area in sleep and thermoregulation. Frontiers in Neuroscience, 15, 664781. https://doi.org/10.3389/fnins.2021.664781
Ryczko, D., e Dubuc, R. (2023). Dopamine control of downstream motor centers. Current Opinion in Neurobiology, 83, 102785. https://doi.org/10.1016/j.conb.2023.102785
Soares, D.D., Coimbra, C.C., e Marubayashi, U. (2007). Tryptophan-induced central fatigue in exercising rats is related to serotonin content in preoptic area. Neuroscience letters, 415(3), 274-278. https://doi.org/10.1016/j.neulet.2007.01.035
Soares, D.D., Lima, N.R.V., Coimbra, C.C., e Marubayashi, U. (2003). Evidence that tryptophan reduces mechanical efficiency and running performance in rats. Pharmacology Biochemistry and Behavior, 74(2), 357-362. https://doi.org/10.1016/s0091-3057(02)01003-1
Soares, D.D., Lima, N.R.V., Coimbra, C.C., e Marubayashi, U. (2004). Intracerebroventricular tryptophan increases heating and heat storage rate in exercising rats. Pharmacology Biochemistry and Behavior, 78(2), 255-261. https://doi.org/10.1016/j.pbb.2004.03.015
Sujkowski, A., Hong, L., Wessells, R.J., e Todi, S.V. (2022). The protective role of exercise against age-related neurodegeneration. Ageing Research Reviews, 74, 101543. https://doi.org/10.1016/j.arr.2021.101543
Takahashi, H., Takada, Y., Nagai, N., Urano, T., e Takada, A. (2000). Serotonergic neurons projecting to hippocampus activate locomotion. Brain research, 869(1-2), 194-202. https://doi.org/10.1016/S0006-8993(00)02385-4
Tang, Q., Assali, D.R., Güler, A.D., e Steele, A.D. (2022). Dopamine systems and biological rhythms: Let’s get a move on. Frontiers in Integrative Neuroscience, 16, 957193. https://doi.org/10.3389%2Ffnint.2022.957193
Teixeira-Coelho, F., Uendeles-Pinto, J.P., Serafim, A.C.A., Wanner, S.P., de Matos Coelho, M., e Soares, D.D. (2014). The paroxetine effect on exercise performance depends on the aerobic capacity of exercising individuals. Journal of sports science & medicine, 13(2), 232. https://www.researchgate.net/publication/262021422
Tornero-Aguilera, J.F., Jimenez-Morcillo, J., Rubio-Zarapuz, A., e Clemente-Suárez, V.J. (2022). Central and peripheral fatigue in physical exercise explained: A narrative review. International journal of environmental research and public health, 19(7), 3909. https://doi.org/10.3390/ijerph19073909
Van Galen, K.A., Ter Horst, K.W., e Serlie, M.J. (2021). Serotonin, food intake, and obesity. Obesity Reviews, 22(7), e13210. https://doi.org/10.1111/obr.13210
Vanderwolf, C. H. (1989). A general role for serotonin in the control of behavior: studies with intracerebral 5, 7-dihydroxytryptamine. Brain research, 504(2), 192-198. https://doi.org/10.1016/0006-8993(89)91356-5
Vanderwolf, C.H., Leung, L.W.S., Baker, G.B., e Stewart, D.J. (1989). The role of serotonin in the control of cerebral activity: studies with intracerebral 5, 7-dihydroxytryptamine. Brain research, 504(2), 181-191. https://doi.org/10.1016/0006-8993(89)91355-3
Yamashita, M. (2020). Potential role of neuroactive tryptophan metabolites in central fatigue: establishment of the fatigue circuit. International Journal of Tryptophan Research, 13, 1178646920936279. http://dx.doi.org/10.1177/1178646920936279
Yatham, L.N., e Steiner, M. (1993). Neuroendocrine probes of serotonergic function: a critical review. Life sciences, 53(6), 447-463. https://doi.org/10.1016/0024-3205(93)90696-z
Biografia Autor
http://lattes.cnpq.br/4980120727283786
Direitos de Autor (c) 2024 Lecturas: Educación Física y Deportes
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.