Subacute Influence of Body Cooling on the Perception of Delayed Onset Muscle Pain

Abstract

Objective: To investigate the subacute influence of the use of body cooling by immersion in cold water on the perception of Delayed Muscle Pain (DOMS), in the posterior leg muscles, 24, 48 and 72 hours after carrying out a three-course muscle fatigue protocol. series of repetitions until concentric failure of the bilateral plantar flexion and dorsiflexion movement. Methods: 22 untrained participants (age: 20.4±1.7 years; body mass: 65.91±15.38kg; height: 166.86±8.47cm) participated in an effort protocol that consisted of three sets of repetitions until concentric failure of the leg muscles, of plantar flexion and bilateral dorsiflexion movement, with one's own body weight. After one minute, through a draw, one of the legs was designated for immersion, up to the height of the popliteal fold, in a vat of ice water (between 12 and 14º C), during three stages of 5 minutes with a 1 minute break between each stage, totaling 15 minutes of immersion. At the same time, the other leg remained in passive recovery, serving as control. After 24, 48 and 72 hours, the individuals were evaluated regarding the perception of DOMS, in both legs, with an analog pressure algometer (pressure of 6kgf/cm²). The perception of pain was signaled by the participants using the Pain Visual Analogue Scale (VAS). Results and conclusions: No statistically significant differences (p<0.05) were found between body cooling and passive recovery, in both groups, in the assessment of perception of DOMS 24, 48 and 72 hours after the exercise protocol.

Keywords: Cold-water immersion, Muscle damage, Injuries, Pos-exercice recovery

References

Abaïdia, AE, Lamblin, J., Delecroix, B., Leduc, C., McCall, A., Nédélec, M., Dawson, B., Baquet, G., & Dupont, G. (2017). Recovery from exercise-induced muscle damage: cold-water immersion versus whole-body cryotherapy. International Journal of Sports Physiology and Performance. 12(3), 402-409. https://doi.org/10.1123/ijspp.2016-0186

Bleakley, C., McDonnough, S., Gardner, E., Baxter, G. D., Hopkins, J. T., & Davison, G. W. (2012). Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database of Systematic Reviews. 2(2), CD008262. https://doi.org/10.1002/14651858.cd008262

Carnaval, P.E. (1995). Medidas e Avaliação em Ciências do Esporte. Sprint Editora.

Castro, F.O.B. (2010). Influência da aplicação da bolsa de gelo na força de preensão manual. Revista Brasileira de Fisiologia do Exercício. 9(3), 156-161. https://doi.org/10.33233/rbfe.v9i3.3527

Cohen, J. (1992). Quantitative methods in psychology, “A power primer”. Psychological Bulletin. 112, 155-159. https://doi.org/10.1037//0033-2909.112.1.155

Crowther, F., Sealey, R., Crowe, M., Edwards, A., & Halson, S. (2017). Influence of recovery strategies upon performance and perceptions following fatiguing exercise: a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation. 9(25). https://doi.org/10.1186/s13102-017-0087-8

Dantas, G., Barros, A., Silva, B., Belém, L., Ferreira, V., Fonseca, A., Castro, P., Santos, T., Lemos, T., & Hérickson, W. (2020). Cold-Water Immersion Does Not Accelerate Performance Recovery After 10-km Street Run: Randomized Controlled Clinical Trial. Research Quaterly for Exercise and Sport, 91(2), 228-238. https://doi.org/10.1080/02701367.2019.1659477

Paiva, PR, Tomazoni, SS, Johnson, DS, Vanin, AA, Albuquerque-Pontes, GM, Machado, CD, Casalechi, HL, Carvalho, PTC, & Leal-Junior, ECP (2016). Photobiomodulation therapy (PBMT) and/or cryotherapy in skeletal muscle restitution, what is better? A randomized, double-blinded, placebo-controlled clinical trial. Lasers in Medical Science. 31(9), 1925-1933. https://doi.org/10.1007/s10103-016-2071-z

Duply, Ó., Douzi, W., Theurot, D., Bosquet, L., & Dugué, B. (2018). An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front Physiology, 26(9), 403. https://doi.org/10.3389/fphys.2018.00403

Friden, J., & Lieber, R.L. (1998). Segmental muscle fiber lesions after repetitive eccentric contractions. Cell and Tissue Research, 293(1), 165-171. https://doi.org/10.1007/s004410051108

Gregson, W., Black, MA, Jones, H., Milson, J., Morton, J., Dawson, B., Atkinson, G., & Green, DJ (2011). Influence of cold water immersion on limb and cutaneous blood flow at rest. The American Journal of Sports Medicine. 39(6), 1316-1323. https://doi.org/10.1177/0363546510395497

Guyton, A.C., & Hall, J.E. (2006). Tratado de Fisiologia Médica. Elsevier.

Hotfiel, T., Frelwald, J., Hoppe, MW, Hotfiel, T., Freiwald, J., Hoppe, M., Lutter, C., Forst, R., Grim, C., Bloch, W., Hüttel, M., & Heiss, R. (2018). Advances in delayed-onset muscle soreness (DOMS): Part I: Pathogenesis and diagnostics. Sportverl Sportschad, 32, 243-250. https://doi.org/10.1055/a-0753-1884

Knight, K.L. (2000). Crioterapia no Tratamento das Lesões Esportivas. Editora Manole.

Krueger, M., Costello, J.T., Achtzehn, S., Dittmar, K.H., & Mester, J. (2018). Whole-body cryotherapy (-110° C) following high-intensity intermittent exercise does not alter hormonal, inflammatory or muscle damage biomarkers in trained males. Cytokine, 113, 277-284. https://doi.org/10.1016/j.cyto.2018.07.018

Leeder, J., Gissane, C., Van Someren, K., Gregson, W., & Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: a meta-analysis. British Journal of Sports Medicine, 46(4), 233-240. https://doi.org/10.1136/bjsports-2011-090061

Lewis, P.B., Ruby, D., & Bush-Joseph, C.A. (2012). Muscle soreness and delayed-onset muscle soreness. Clinical Journal of Sports Medicine. 32(2), 255-262. https://doi.org/10.1016/j.csm.2011.09.009

Machado, AF, Ferreira, PH, Micheletti, JK, Almeida, AC, Lemes, ÍR, Vanderlei, FM, Netto Junior, J., & Pastre, CM (2016). Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Medicine, 46, 503-514. https://doi.org/10.1007/s40279-015-0431-7

Mullaney, M.J., McHugh, M.P., Kwiecien, S.Y., Ioviero, N., Fink, A., & Howatson, G. (2021). Accelerated Muscle Recovery in Baseball Pitchers Using Phase Change Material Cooling. Medicine & Science in Sports & Exercise, 53(1), 228-235. https://doi.org/10.1249/MSS.0000000000002447

Myrer, W.J., Myrer, K.A., Measom, G.J., Fellingham, G.W., & Evers, S.L. (2001). Muscle temperature is affected by overlying adipose when cryotherapy is administered. Journal of Athletic Training, 36, 32-36. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC155399

Sánchez-Ureña, B., Martínez-Guardado, I., Crespo, C., Timón, R., Calleja-González, J., Ibañez, SJ, & Olcina, G. (2017). The use of continuous vs. intermittent cold water immersion as a recovery method in basketball players after training: a randomized controlled trial. Physician and Sportsmedicine, 45(2), 134-139. https://doi.org/10.1080/00913847.2017.1292832

Santos, WOC, Brito, CJ, Júnior, EAP, Valido, CN, Mendes, EL, Nunes, MAP, & Franchini, E. (2012). Cryotherapy post-training reduces muscle damage markers in jiu-jitsu fighters. Journal of Human Sports and Exercise, 9(3), 629-638. https://doi.org/10.4100/jhse.2012.73.03

Stearns, RL, Nolan, JK, Huggins, RA, Maresh, CM, Munõz, CX, Pagnotta, KD, Vok, BM, & Casa, DJ (2018). Influence of cold-water immersion on recovery of elite triathletes following the ironman world championship. Journal of Science and Medicine in Sport, 21(8), 846-851. https://doi.org/10.1016/j.jsams.2017.12.011

Stephens, J.M., Halson, S.L., Miller, J., Slater, G.J., & Askew, C.D. (2017). Cold water immersion for athletic recovery: one size does not fit all. International Journal of Sports Physiology and Performance, 12(1), 2-9. https://doi.org/10.1123/ijspp.2016-0095

Stephens, J.M., Halson, S.L., Miller, J., Slater, G.J., Champman, D.W., & Askew, C.D. (2018). Effect of body composition on physiological responses to cold-water immersion and the recovery of exercise performance. International Journal of Sports Physiology Performance, 12(3), 382-389. https://doi.org/10.1123/ijspp.2017-0083

Tricoli, V. (2001). Mecanismos envolvidos na etiologia da dor muscular tardia. Revista Brasileira de Ciência e Movimento, 9(2), 39-44. https://pesquisa.bvsalud.org/portal/resource/pt/lil-310403

Tseng, C-Y, Lee, J-P, Tsai, Y-S, Lee, S-D, Kao, C-L, Liu, T-C, Lai, C-U, Harris, MG, & Kuo, C-H (2013). Topical cooling (icing) delays recovery from eccentric exercise-induced muscle damage. Journal of Strength and Conditioning Research, 27(5), 1354-1361. https://doi.org/10.1519/jsc.0b013e318267a22c

Thomas, J.R., Nelson, J.K., & Silverman, S.J. (2012). Research methods in physical activity. Artmed Editora.

Vaile, J., O’Hagan, C., Stefanovic, B., Walker, M., Gill, N., & Askew, C.D. (2009). Effect of cold water immersion on repeated cycling performance and limb blood flow. British Journal of Sports Medicine, 45(10), 825-829. https://doi.org/10.1136/bjsm.2009.067272

Wilcock, I.M., Cronin, J.B., & Hing, W.A. (2006). Physiological response to water immersion: a method for sport recovery? Sports Medicine, 36(9), 747-765. https://doi.org/10.2165/00007256-200636090-00003

Author Biographies

Moisés Augusto de Oliveira Borges,

http://lattes.cnpq.br/1379974196956882

Gabriel Costa e Silva,

http://lattes.cnpq.br/0383074304600334

Fabrizio Di Masi,

http://lattes.cnpq.br/0383074304600334

Published
2024-06-02
How to Cite
Borges, M. A. de O., Costa e Silva, G., & Di Masi, F. (2024). Subacute Influence of Body Cooling on the Perception of Delayed Onset Muscle Pain. Lecturas: Educación Física Y Deportes, 29(313), 98-110. https://doi.org/10.46642/efd.v29i313.7492
Section
Research Articles