Algoritmo computacional para regular a margem de erro na estimativa da intensidade do exercício

Resumo

Desde 1938 existem problemas com os modelos usados ​​para estimar a frequência cardíaca máxima, a aplicação da resposta da frequência cardíaca ao exercício tem sido usada para calcular a intensidade em que o treinamento será realizado, mas há muita variação entre as estimativas e as resultados medições reais, de modo que o desejável inclua variações de mais ou menos 3 batimentos por minuto. Com o exposto, objetiva-se a criação de um algoritmo computacional como ferramenta, que suporte a construção de modelos de regressão linear com o menor erro possível em batimentos por minuto. Esse aplicativo de software é publicado em acesso aberto no GitHub sob o nome eq.exe.

Palavras-chave: Esporte, Software livre, Planejamento

Referências

Chicco, D., Warrens, M.J., y Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peer J Computer Science, 7, 1–24. https://doi.org/10.7717/PEERJ-CS.623/SUPP-1

Cuesta Vargas, A.I. (2006). Valoración y prescripción de ejercicio aeróbico en hidroterapia. Revista Iberoamericana de Fisioterapia y Kinesiología, 9(1), 28–35. https://doi.org/10.1016/S1138-6045(06)73112-4

Ester, M., Kriegel, H.P., Sander, J., y Xu, X. (1996). A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. https://www.aaai.org/

Magoev, K., Kirill Krzhizhanovskaya, V., y Kovalchuk, S.V. (2018). Application of clustering methods for detecting critical acute coronary syndrome patients. 7th International Young Scientist Conference on Computational Science, 136, 370–379. https://doi.org/https://doi.org/10.1016/j.procs.2018.08.277

Molina-Carmona, I., Gómez-Carmona, C., Bastida-Castillo, A., y Pino-Ortega, J. (2018). Validez del dispositivo inercial WIMU PRO para el registro de la frecuencia cardiaca en un test de campo. SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 7(1), 81–86. https://doi.org/10.6018/321921

Newcastle University (2022). Numeracy, Maths and Statistics - Academic Skills Kit. https://www.ncl.ac.uk/webtemplate/ask-assets/external/maths-resources/statistics/regression-and-correlation/coefficient-of-determination-r-squared.html

Pereira-Rodríguez, J., Boada-Morales, L., Jaimes-Martin, T., Melo-Ascanio, J., Niño-Serrato, D., y Rincón-González, G. (2016, November 7). Predictive equations for maximum heart rate. Myth or reality. Rev. Mex. Cardiol., 27(4). http://www.scielo.org.mx/article_plus.php?pid=S0188-21982016000400156&tlng=en&lng=es

Plews, D., Laursen, P., Stanley, J., Kilding, A.E., y Buchheit, M. (13 de Julio de 2013). Training Adaptation and Heart Rate Variability in Elite Endurance Athletes: Opening the Door to Effective Monitoring. Sports Medicine, 43, 773–781. http://dx.doi.org/10.1007/s40279-013-0071-8

Rahmah, N., y Sukaesih Sitanggang, I. (2016). Determination of Optimal Epsilon (Eps) Value on DBSCAN Algorithm to Clustering Data on Peatland Hotspots in Sumatra. IOP Conf. Ser.: Earth Environ. Sci, 31. https://doi.org/10.1088/1755-1315/31/1/012012

Raman, V. (2020, November). Predicting Heart Disease Using Machine Learning? Don’t! - KDnuggets. I Believe the “Predicting Heart Disease Using Machine Learning” Is a Classic Example of How Not to Apply Machine Learning to a Problem, Especially Where a Lot of Domain Experience Is Required. https://www.kdnuggets.com/2020/11/predicting-heart-disease-machine-learning.html

Reyes Rodríguez, A.D. (2011). View of Exercise, Health and Assumptions in Calculating the Estimated Maximum Heart Rate. Revista Electrónica Educare, 15(1), 79–90. https://doi.org/http://doi.org/10.15359/ree.15-1.5

Ríos, L.C., y Toro, N. (2006). Estimación de parámetros en modelos arma por el criterio de mínimos cuadrados. Scientia et Technica, XII(31), 133–137. https://www.redalyc.org/pdf/849/84911639024.pdf

Robergs, R.A., y Landwehr, R. (2002). JEPonline - Journal of Exercise Physiology online Commentary The surprising history of the “HRmax=220-age” EQUATION. An International Electronic Journal, 5.

Rust Programming Language (2022). https://www.rust-lang.org/tools/install

Sharma, A. (2020, September 8). How Does DBSCAN Clustering Work? | DBSCAN Clustering for ML. How to Master the Popular DBSCAN Clustering Algorithm for Machine Learning. https://www.analyticsvidhya.com/blog/2020/09/how-dbscan-clustering-works/

Tierney, B. (2021, October 29). DBScan Clustering in Python. Oralytics. https://oralytics.com/2021/10/18/dbscan-clustering-in-python/

UjhdiuhVogel, C.U., Wolpert, C., y Wehling, M. (2004). How to measure heart rate? European Journal of Clinical Pharmacology, 60, 461-466. https://doi.org/10.1007/s00228-004-0795-3

Yang, X.S. (2019). Data fitting and regression. In Introduction to Algorithms for Data Mining and Machine Learning (pp. 67–90). Academic Press. https://doi.org/10.1016/B978-0-12-817216-2.00011-9

Publicado
2023-01-10
Como Citar
Buendia-Lozada, E. R. P. (2023). Algoritmo computacional para regular a margem de erro na estimativa da intensidade do exercício. Lecturas: Educación Física Y Deportes, 27(296), 23-32. https://doi.org/10.46642/efd.v27i296.3644
Seção
Artigos de pesquisa